

KNOW LABS

3rd Bernstein CGM Disruptors Conference November 2, 2023

Pete Conley CFO & SVP IP Know Labs (NYSE American: KNW)

DISCLOSURE

CAUTION ABOUT FORWARD-LOOKING STATEMENTS

This document contains forward-looking statements that are based on the Company management's beliefs and assumptions and on information currently available to the Company. All statements of historical facts are forward-looking statements. These statements or achievements expressed or implied by these forward-looking statements. Forward-looking statements include, but are not limited to, statements about: goals and strategies; future business development, financial condition and results of operations expected product development ductomes, including obtaining regulatory clearance; expected changes in revenue, costs or expenditures; growth of and competition trends in industry, and expectations regarding demand for, and market acceptance, expected changes in revenue, costs or expenditures; growth of and competition trends in industry, and expectations regarding demand for, and market acceptance of, our products. You can identify forward looking statements by terms such as "may," "could," "wuld, "expect," "plan," "intend," "anticipate," "believe," "estimate," "predict," "potential," "project" or "continue" or the negative of these terms or other comparable terminology. These statements are only predictions. You should not place undue reliance on forward-looking statements, you should consider various factors, including: "Company managements' ability to change the direction of the company; ability to keep pace with new technology and changing market needs; and the competitive environment of the business. There and other factors may cause the Company or its representatives, may not is representatives might not occur, and actual events and other statements made from time to time by the Company or its representatives might not occur, and other statements are only there to as a subject to risks, uncertainties and other statements are only or its representatives might not occur. See offering document and other statements made from time to itme by the Company or its representatives might not occur. See offering documents

General securities market uncertainties resulting in economic considerations.

Recent unease regarding the aforementioned geo-political considerations and increasing inflation has caused the United States and worldwide national securities markets to have undergone unprecedented stress due to the uncertainties of regarding the economy and the resulting reactions and outcomes of governments, businesses, and the general population. These uncertainties have resulted in declines in all market sectors, increases in volumes due to flight to safety and governmental actions to support the markets. As a result, until economic outlook has stabilized, the markets may not be available to the Company for purposes of raising required capital. Should we not be able to obtain financing when required, in the amounts necessary to execute on our plans in full, or on terms which are economically feasible, we may be unable to sustain the necessary capital to pursue our strategic plan and may have to reduce the planned future growth and/or scope of our operations.

We need additional financing to support our technology development and ongoing operations, pay our debts and maintain ownership of our intellectual properties.

We are currently operating at a loss and using substantial cash to fund our operation. We believe that our cash on hand will be sufficient to fund our operations through September 30, 2024. We will need additional financing to implement our business plan and to service our ongoing operations, pay our current debts (described below) and maintain ownership of our intellectual property. There can be no assurance that we will be able to secure any needed funding, or that if such funding is available, the terms or conditions would be acceptable to us. If we are unable to obtain additional financing when it is needed, we will need to restructure our operations and/or divest all or a portion of our business. We may seek additional capital through a combination of private and public equity offerings, debt financing, if obtained, could result and, mainting or restricting our ability to take specific actions, such as incurring additional debt, and could increase our expenses and require that our assets secure such debt. Equity financing, if obtained, could result in dilution to our then-existing stockholders and/or require such stockholders to waive certain rights and preferences. Strategic collaborations may include features which could limit the Company's ultimate potential. If such financings is not available on satisfactory terms, or is not available at all, we may be required to delay, scale back, eliminate the development of business opportunities and our operations and financial condition may be materially adversely affected.

We have a history of operating losses and there can be no assurance that we can achieve or maintain profitability.

We have experienced net losses since inception. As of June 30, 2023, we had an accumulated deficit of \$118,715,000 and net losses in the amount of \$12,353,000, \$20,071,000 and \$25,360,000 during the nine months ended June 30, 2023 and the years ended September 30, 2022 and 2021, respectively. There can be no assurance that we will achieve or maintain profitability in the future, we may not be able to sustain profitability in subsequent periods. Failure to become and remain profitable would impair our ability to sustain set ad adversely affect the price of our common stock and our ability to raise capital. Our operating expenses may increase as we spend resources on growing our business, and if our revenue does not correspondingly increase, our operating results and financial condition will suffer. Our businesses have produced minimal revenues and may not produce significant revenues in the near term, or at all, which would harm our ability to continue our operations or obtain additional financing and require us to reduce or discontinue our operations. You must consider our business, and prospects in financial could difficulties, which could significant try harm our business, operating results and financial could infancial to successfully address these risks and difficulties, which could significant thy harm our business, operating results and financial could infancial to successfully address these risks and difficulties with an early-stage technology in an ew and rapidly evolving industry. We may not be able to successfully address these risks and difficulties with an early-stage technology in a new and rapidly evolving industry.

If we are unable to secure a sales and marketing partner or establish satisfactory sales and marketing capabilities at our company, we may not be able to successfully commercialize our technology.

If we are not successful entering into appropriate collaboration arrangements or recruiting sales and marketing personnel or in building a sales and marketing infrastructure, we will have difficulty successfully commercializing our technology, which would adversely affect our business, operating results and financial condition.

We may not be able to enter into collaboration agreements on terms acceptable to us or at all. in addition, even if we enter into such relationships, we may have limited or no control over the sales, marketing and distribution activities of these third parties. Our future revenues may depend heavily on the success of the efforts of these third parties. If we elect to establish a sales and marketing infrastructure, we may not realize a positive return on this investment. In addition, we must compete with established and well-funded pharmaceutical and biotechnology companies to recruit, hire, train and retain sales and marketing personnel. Factors that may inhibit our efforts to commercialize technology without strategic partners or licensees include:

- our inability to recruit and retain adequate numbers of effective sales and marketing personnel;

- the lack of complementary products to be offered by sales personnel, which may put us at a competitive disadvantage relative to companies with more extensive product lines; and

- unforeseen costs and expenses associated with creating an independent sales and marketing organization.

Government regulatory approval may be necessary before some of our products can be sold and there is no assurance such approval will be granted.

Our technology will have a number of potential applications in fields of use which will require prior governmental regulatory approval before the technology can be introduced to the marketplace. For example, we are exploring the use of our technology for certain medical diagnostic applications, with an initial focus on the monitoring of blood glucose. There is no assurance that we will be successful in developing glucose monitoring medical applications for our technology. If we re to be successful in developing glucose monitoring medical applications of our technology. If we well be successful in developing the services applications for our technology. If were to be successful in developing glucose monitoring medical applications of our technology. If we well be success the massive data collected through the Bio-RFID sensor. ML/Al also controls the sensor operation, enabling the device to emit and capture data, and, ultimately, to identify and measure blood glucose levels. Machine learning-enabled device software functions (ML-DSF) continue to be evaluated by the FDA, which recently released new guidance proposing a science-based approach for AI/ML-enabled medical device to be modified and improved more quickly. There is no assurance that such regulatory approval would be obtained for a glucose monitoring medical diagnostic for elavines of parter for applications for our technology is approval to the antiperval of an application for clearance of marketing a glucose monitoring device for many reasons. We may not obtain the necessary regulatory approvals or clearances to market these glucose monitoring systems in the United States or outside of the United States or outside of the United States or outside of the United States. Any device to ceive or maintain, approval in clearance for our products could prevent us from generating revendues for devices or hiering provals or clearances to market these glucose monitoring systems in the United States or outside of the United States or outside of the United States or o

WHAT'S HAPPENED SINCE LAST YEAR'S BERNSTEIN 2022 CONFERENCE?

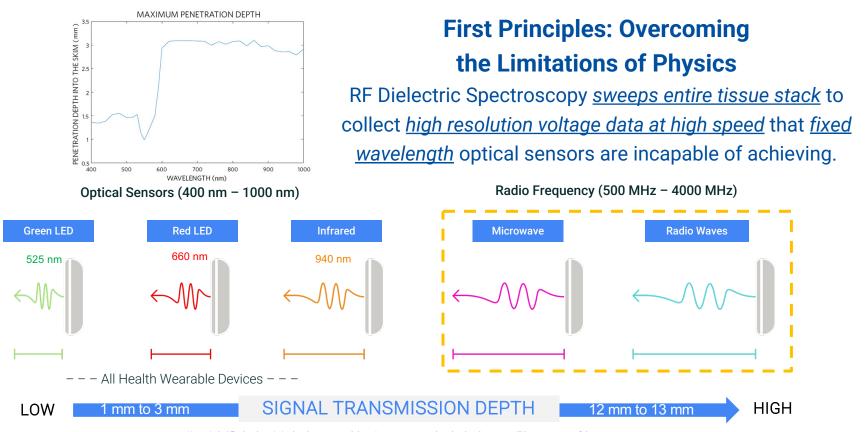
FY Sept 2023 In Review:

- **1. PRODUCT:** Successful introduction of Gen 1 Product Prototype on June 7, 2023.
- **2.** SCIENTIFIC VALIDATION: Peer-Reviewed Publication in Sensors Journal of Proof-of-Principle Study in Collaboration with Mayo Clinic. Poster presentations at APS and AACE.
- **3.** CLINICAL ACCURACY: Demonstrated 11.27% MARD from data collected in normoglycemic and hyperglycemic ranges across 366 datasets, 3,300 reference points and ><u>1.7B</u> datapoints.
- **4. INTELLECTUAL PROPERTY:** Patents issued, pending and in-process increased from 89 to 246 YoY (+176% vs. market +35%, 5x market CAGR) reflecting our high rate of innovation. Ranked by IPCG #1 in the world for non-invasive blood glucose monitoring IP.
- **5. STRATEGIC COLLABORATIONS:** JDA discussions currently underway with potential biopharma, med device and consumer electronics partners.

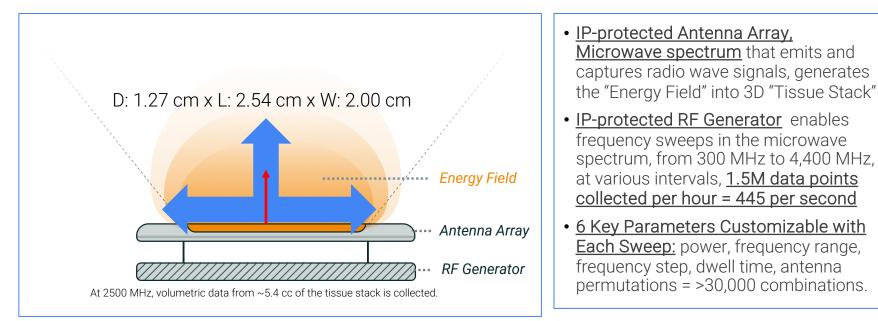
INTRODUCED JUNE 7, 2023

KnowU 2023: NI BGM & 2024: NI CGM

<u>Gen 1</u>: Place your palm or arm on the portable device for on-demand NI BGM data. "Computer mouse" form factor.


Gen 2: 50% smaller wearable NI CGM currently under development for early 2024 release. "AirPods case" form factor.

Generation 1 Prototype Device: A sophisticated research lab in your pocket.


COPYRIGHT KNOW LABS, INC. 2023

WHY IT WORKS (and why others don't)

HOW IT WORKS: More is More ... 3D Data Improves Clinical Accuracy

<u>Three Orders of Magnitude Increase</u> of Volumetric <u>3D</u> <u>Voltage Data</u> Collected in <u>Real Time</u> versus Current <u>2D</u> CGMs

HOW IT WORKS: Dexcom G7 versus KnowU - FDA Test Principles

THE VOLTS HAVE IT: Two Different Models of **"Glucose Voltmeters"**: **Real-time Direct Reading** of Blood Glucose **Without the Proxy Latency** of Current CGMs

- The Dexcom G7 system detects glucose levels from the fluid just beneath the skin (interstitial fluid) using a microneedle to a depth of 5 mm & .001 cc.
- The microneedle continuously measures glucose concentrations in the interstitial fluid via an enzymatic electrochemical reaction using glucose oxidase. Glucose oxidase catalyzes the oxidation of glucose and produces hydrogen peroxide, as a proxy for blood glucose.
- The production of proxy hydrogen peroxide <u>generates</u> <u>an electrical current that is proportional to the</u> <u>interstitial glucose concentration</u> which, using an algorithm, is converted to a glucose value.

- The KnowU system detects glucose levels in real-time across the "tissue stack" (interstitial fluid, capillary blood, venous blood, cellular glucose) using non-invasive <u>RF dielectric</u> (impedance measurement) spectroscopy to a depth of 12.7 mm & 5.4 cc.
- KnowU harnesses the dielectric properties of glucose, a polar molecule in the body, and its ability to store electrical energy in an electric field (known as permittivity).
- Using time frequency sweeps, KnowU rapidly scans a large range of RF frequencies and <u>records voltage values detected at</u> <u>each frequency to quantify real-time blood glucose</u> <u>continuously</u>.
- For each RF sweep, the KnowU returns a vector of voltage values representing the antenna's transmission coefficient (**using S21**, not S11) over its frequency of operation.

CLINICAL TESTING PROTOCOL Data Collection Over 3 Hour Test

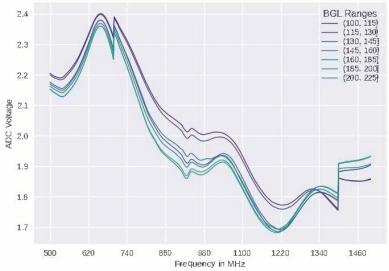
- The array of antennas sits approximately 1 mm away from the users' skin inside the plastic wall of the device with which the user is in contact. The patient's arm, hand, or other body part appropriate for the sensor must be against the device for the 22 second length of the frequency sweep.
- The sensor currently operates within a frequency range of roughly 500 to 1500 MHz, though it has the ability to operate between 300 and 4400 MHz so a larger range scan could be used in the future.
- To take a measurement, the sensor scans through the frequency range, currently using 0.1 MHz intervals so that 10,001 data points are collected per sweep, equals 445 data points per second (versus 30 data points per second for a pulse oximeter).

Using KnowU on Hand

Using KnowU on Forearm

FROM IN VITRO TO IN VIVO GLUCOSE TESTING

- IN VITRO: RF dielectric spectroscopy sensor can measure different concentrations of glucose in solution, where optical sensors cannot.
- IN VIVO: NI RF sensors based on dielectric permittivity can measure variance in blood glucose in BGL ranges.


In Vitro Glucose Solutions Readings

Know Labs RF Sensor In Vitro Signature of Glucose Solutions 2.1 2.0 1.9 Voltage Concentrations - 0.0 - 05 00 1.7 - 1.0 - 20 3.0 1.6 4.0 5.0 10.0 1.5 15.0 20.0 1.4 25.0 1500 1650 1800 1950 2100 2250 2400 **Frequency** in MHz

IN VITRO: ADC Voltage (y-axis) measuring voltage variance based on glucose concentration and frequency sweeps

In Vivo Glucose Readings Over 3 Hour Test

Know Labs RF Sensor Signature of User 4 at GLU ranges in session 3(avg)

IN VIVO: ADC Voltage (y-axis) measuring voltage variance based on dielectric permittivities of blood glucose and frequency sweeps

TIMELINE OF VALIDATION STUDIES FROM IN VITRO TO IN VIVO

2021	-	202	22 202	3	•	TODAY
Manuscript	Proof of Principle with Mayo Clinic	Exploratory Clinical Study	Proof of Concept Clinical Study	Technical Feasibility Study	, New Algorithm Refinement Study	Data Preprocessing Techniques Study
Description	Demonstrated the accuracy of Bio-RFID sensor in quantifying different analytes <i>in</i> <i>vitro</i> (liquid solution).	First indication that Bio-RFID could be an accurate alternative to FDA-cleared glucose devices.	Proof of concept ability to quantify blood glucose non- invasively using RF.	Demonstrates Bio- RFID can deliver stable, repeatable results in measuring blood glucose levels.		Improvement in machine learning model accuracy on an expanded mixed cohort dataset.
Accuracy	Almost 100% in vitro accuracy	MARD <u>5.3%-6.7%</u>	MARD 19.3%	MARD 20.6%	MARD 12.9%	MARD <u>11.3%</u>
# Participants	na	2	1	5	5	13
# Datasets	na	3	22	106	106	366
# Bio-RFID datapoints	na	<u>1.5M</u>	~183M	~430M	~430M	<u>~1.7B (</u> 3 order of magnitude)
# Reference Observations	na	75	~383	~1,555	~1,555	~3,311

SCIENTIFIC VALIDATION:

FY2023 Review: Sensors Journal, APS, AACE

sensors

Detecting Unique Analyte-Specific Radio Frequency Spectral Responses in Liquid Solutions-Implications for Non-Invasive **Physiologic Monitoring**

Dominic Klyve 1,*, James H. Anderson, Jr. 2, George Lorentz 3 and Virend K. Somers 3

Dominic Klyve1, Ph.D., Barry Shelton2, Ph.D., Carl Ward, Ph.D.3, David Schwarz3, James H. Anderson Jr., M.D.3, Steve Kent2

RESULTS

- ¹ Department of Mathematics, Central Washington University, Ellensburg, V Know Labs Inc., Seattle, WA 98101, USA; andy@knowlabs.co
- ³ Mayo Clinic, Rochester, MN 55902, USA; lorentz.george@mayo.edu (G.L.);

Correspondence: klyved@cwu.edu

Abstract: With rising healthcare costs and the rapid increase in remote care delivery, there is an increasing need for economical, accurate, a measures of blood analytes. Based on radio frequency identification (R technology (the Bio-RFID sensor) was developed to non-invasively 1 capture data from individual radio frequencies, and convert those da ingful information and insights. Here, we describe groundbreaking pr Bio-RFID to accurately measure various concentrations of analytes in (we tested the hypothesis that the Bio-RFID sensor is able to precisely and identify a variety of analytes in vitro. For this assessment, varying propyl alcohol; (2) salt in water, and (3) commercial bleach in water we double-blind trial design, as proxies for biochemical solutions in gene was able to detect concentrations of 2000 parts per million (ppm), with e to detect considerably smaller concentration differences.

Technical Feasibility of a Novel Sensor for Non-Invasive Blood Glucose Monitoring Compared to Dexcom G6®

¹Department of Mathematics, Central Washington University Ellensburg 98926, USA. klyved@cwu.edu ²Know Labs, Inc. ³Edge Impulse, Inc

BACKGROUND & AIM

For the over 537M people living with diabetes, current methods of testing blood glucose concentration (BGC) come with drawbacks, whether they use traditional blood draws and test strips or more modern continuous plucose monitors (CGMs): the pain of finger-sticks or CGM probe insertion: the recurring cost of test strips or one-time use probes; and the environmental impact of both.

Know Labs has developed a novel electromagnetic platform technology - the Bio-RFID" platform - to non-invasively capture data from individual radio frequencies and convert those data into physiologically meaningful information and insights.

We investigated the technical feasibility for this new method to quantify blood glucose in vivo non-invasively using RF by means of training a neural network (NN) model to predict readings of the Dexcom G6® as a proxy for BGC.

METHOD

· In a series of 46 tests (92 samples), five participants placed forearms on the Bio-RFID sensor and consumed

Dexcom G6® as reference device, while logging the readings of the sensor.

Data were collected on a continuous basis, using sweeps across the 500 MHz - 1500 MHz range at 0.1 MHz intervals, collecting values at 10,001 frequencies per sweep Using the data captured with the Bio-RFID sensor, we

trained a NN model to predict BGC readings of the Dexcom G6® reference device

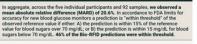
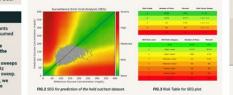



FIG.1 Select results predicted by the NN model, plotted with the Descorn G68 readings across time.

March 3-5 STUDY DE . A serie

Detecting Unique Analyte-Specific Radio Frequency Spectral Responses in Liquid Solutions

Implications for Non-Invasive Physiologic Monitoring

BACKGROUND & AIMS

Know Labs has developed a novel electromagnetic platform technology - the Bin-BFID* platform - to non-invasively penetrate surfaces, capture data from individual radio frequencies, and convert those data into physiologically meaningful information and nsights. Ongoing studies demonstrate Bio-RFID accuracy for non-invasive methods of medical diagnostics, with an ultimate aim of non-invasive blood plucose monitoring

	METHODS				
2021	LOCATION: St. Mary's campus of Mayo Clinic, Rochester, MN				
SIGN:	experiments designed to demonstrate the ability of				
	experiments designed to demonstrate the ability of				

once, and then performing blinded scans of the same solutions

the RF sensor to

Solutions of 1) water in isopropyl alcohol: 2) sodium chloride in water; and 3) commercial bleach in water were tested as proxies for biochemical solu Data were collected using the Bio-RFID sensor that generates RF signals and ures received power through an antenna array

CONCLUSIONS

should make 95% of predictions within threshold, we find

deliver repeatable results and as infrastructure for future

data collection. Because a truly non-invasive CGM would

be a powerful tool in diagnosing, managing, and treating

diabetes and pre-diabetes, more research is underway to

Know Labs Generation One Device*

continue refining and developing these algorithms.

the dataset. This study validated Bio-RFID as stable to

these results encouraging given the relatively small size of

Though a clinically useful non-invasive BGC monitor

	(ordered by reames	4
	Blind-2	33,157
873,013	Blind-5	864,963
1,917,048	Blind-6	1,910,652
3,116,386	Blind-3	3,086,471
4,260,250	Blind-1	4,250,653
5,598,519	Blind-4	5,556,104
	1,917,048 3,116,386 4,260,250	88nd-2 873,013 88nd-5 1,917,048 88nd-6 3,114,386 88nd-3 4,240,250 88nd-1

RESULTS

For each of the five experiments, 100% of solutions in the test data were correctly identified. The Bio-RFID technology was able to detect concentrations as low as 2000 parts per million (ppm), with evidence suggesting the ability to detect considerably smaller concentration differences.

FIGURE 1 displays the Bio-RFID signatures of isopropyl alcohol, together with the 1%, 2%, 3%, 4%, and 5% water solutions. It is noteworthy that the image contains the graphs of 12 lines, yet only six are distinguishable. This is due to the fact that the two scans of each of the six solutions led to visually indistingu shable signatures. After every blinded scan, the team was able to visually identify which of the analytes had been scanned from the Rio RED signature since

CONCLUSION

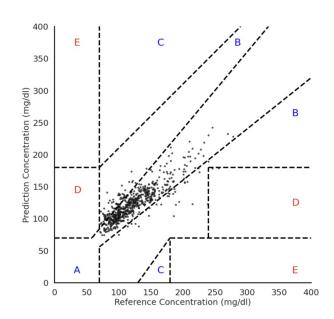
The Bio RFID technology accurately detects, measures, and quantifies specific mol in liquid. While these findings have in vitro commercial applications, these proof-ofprinciple studies provide strong support for the application of Bio-RFID for non-invasive bio-monitoring of physiologically and medically relevant analytes, such as plucose and alcohol, in the human body,

uto Ellevalues WA. * Know Labs Inc., Seattle, WA. * Mayo Clinic

Know Labs' Technology is in development, and there is no assurance that the development will have a successful outcome. Past performance is not indicative of future results. There is no guarantee that any specific objective will be achieved.

COPYRIGHT KNOW LABS, INC. 2023

37.5 grams of liquid D-Glucose. We monitored their BGC for three hours using the


CLINICAL ACCURACY IN MIXED COHORT: July 2023

Novel data preprocessing techniques in an expanded dataset improve ML model accuracy Reviewed By Members of Know Labs' Scientific Advisory Board

1

	Observations	MARD (%)	MAE (mg/dl)	±15%	±20%
Hypoglycemic (<70 mg/dl)	2 (<.3%)	n/a	n/a	n/a	n/a
Normoglycemic (70 – 180 mg/dl)	608 (91.4%)	10.76 ± 0.79	12.00 ± 0.82	75.5 ± 3.4	83.6 ± 2.9
Hyperglycemic (>180 mg/dl)	53 (8.3%)	15.92 ± 2.98	33.43 ± 6.51	58.5 ± 13.3	67.9 ± 12.6

- Demonstrates a test in which the patented RF dielectric (impedance) spectroscopy sensor was able to predict reference values of Dexcom G6® CGM continuously and non-invasively with a <u>MARD of 11.27%</u>
- Caveat: one limitation of this study is the requirement for <u>a larger and more diverse</u> <u>participant population</u>. All participants were healthy and did not have diabetes; indeed, 91.4% of the reference values were in the normoglycemic range

EXPECTED PATH TO MARKET

Completed FY 9/2018 - 2023
Current FY 9/2023 - 2024
Planned FY 9/2024 - 2026

Key

	SENSOR INNOVATION	CONTROLLED LAB TESTING			REAL-WORLD USE TESTING		CO	SCALE & MMERCIAL SPECS	INTERNAL & FDA TRIALS	FDA CLEAR ANCE	
GEN 0 Stationary Research System	Optical sensing path dropped	Exploratory Study (MARD 5.8% to 6.7%)									
	~200 RF antennas designed & tested	Proof of Principle Validation in Vitro with Mayo Clinic									
	Miniaturization to Bio-RFID Sensor	Technical Feasibility & Validation with Humans (MARD 11.3%)			Expand Dataset: Diverse Population, People with Diabetes & Blood Draw (Goal: MARD <10%)						
		N=1 N=5 N=13		NN = 30	Develop Customizable Algorithm						
GEN 1 Portable Research		Design & Build Gen 1 Device (12 Units)	System & Sensor Characterization (Wired + Wireless)	N=5 (pilot study)	Build Gen1 Devic	Enviror	nment, Human s, Diverse Pop				
System			JDA Opportunities	s (biopharma, medical device, and consumer electronics use cases)							
GEN 2 Portable Medical Device			Design & Build Gen 2 Device (earbuds case size)	System & S Characteriz (Wireless)		Build 1,000 Gen2 Devices	N>500 Diverse Population Stu	dy	N=1,000 Design Freeze	N=TBD FDA Trials (multiple)	Gen 2 Device Launch
GEN X		NEW GENERATIONS (New Format(s), Intended Use(s), etc.)									

This slide contains forward-looking statements that are based on Company management's beliefs and assumptions and on information currently available to the Company. See page 2 for our full discussion of forward-looking statements.

Know Labs' Technology is in development, and there is no assurance that the development will have a successful outcome. Past performance is not indicative of future results. There is no guarantee that any specific objective will be achieved.

COPYRIGHT KNOW LABS, INC. 2023

KNOW LABS IP STORY: IP Market is Growing Rapidly in NI BGM

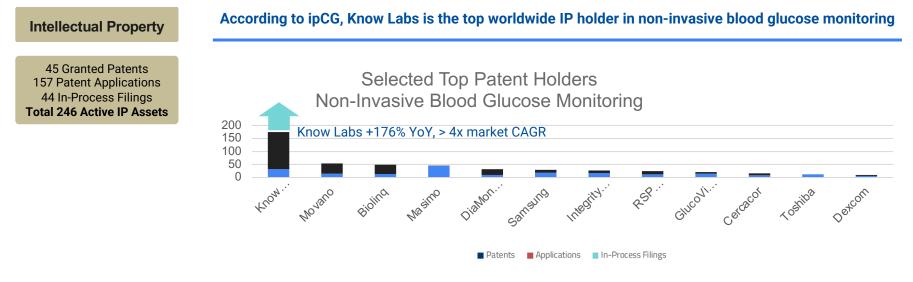
	Yet, IP market is still <i>early day</i> s with limited prior art challenges for Know Labs; enables <i>headroom</i> to build a dominant IP portfolio
	 Overall space has only 1,632 relevant global patents and applications Significantly higher IP activity in past 3-4 years Non-granted applications as a large percentage of filings shows it's difficult to obtain patents in this space
ntellectual Property	Know Labs is well positioned as an IP leader in a rapidly growing IP space
45 Granted Patents 57 Patent Applications 44 In-Process Filings 57 Patent Applications	Global Patent Filing Rate Over Time Non-Invasive Blood Glucose Monitoring
	400 300 200 Market +35% 5 Year CAGR
	100 0 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Patents Applications In-Process Filings

2022 Data - Search Parameters: Semantic search + selected companies, all jurisdictions

COPYRIGHT KNOW LABS, INC. 2023

Int

15 2 **Tot**a

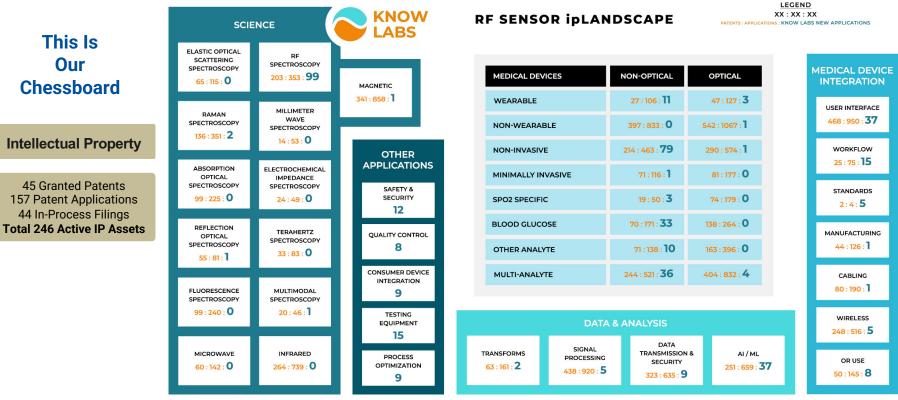

KNOW LABS IP STORY: Extending Our IP Leadership Beyond Just Market Growth

Know Labs' accelerating IP growth <u>reflects high rate of innovation</u>, with significant and focused investment in <u>strategic IP development</u>

Know Labs holds 45 granted patents related to non-invasive blood glucose monitoring

Know Labs also has 157 patent applications pending

An additional 44 filings are in-process



2022 Data - Search Parameters: Semantic search + selected companies, all jurisdictions

COPYRIGHT KNOW LABS, INC. 2023

STRATEGIC IP VALUE CREATION: Leadership & Interoperability

COPYRIGHT KNOW LABS, INC. 2023

F500-Class Strategic Development Partners Accelerate Our Speed to Market

HARDWARE - GENERATION 1 & 2 PROTOTYPES

Bould Design	Igor Institute		Edge Impulse
 Industrial design firm for F500, clients include Google, Roku, and Willow Design support on prototype design for KnowU Generation 1 & 2 	 Engineering firm for F500, clients include Meta, Nike, and Bose KnowU product development focused on mechanical, electrical, firmware engineering; RF sensor 		 Industry-leading development toolkit for machine learning Algorithm refinement Al enablement
PRODUCT DESIGN	SENSOR OPTIMIZATION	1 -	
Dr. Reza Kassayan, M.D.	Racer Technologies		REGULATORY AND eQMS
 Lead designer and system architect specialized in ultra- miniaturized embedded 	Tier 1 Contract manufacturing and wearables manufacturer for Medtronic, Boston Scientific	I٢	Novus
electronics for medical devices Patented sensor refinement 	Corporation, Philips and Bio-Rad KnowU large-scale manufacturing 		 Regulatory systems and strategy guidance to prepare the company
MODULE & BATTERY	MANUFACTURING		for the FDA clearance process

ALGORITHM (DATA SCIENCE)

FY 9/2024* Goals

Introduce Gen 2 CGM device

- Wearable CGM at least 50% smaller than Gen 1 ("earbuds case size")
- Potential format for FDA submission

Further accelerate data collection and continue algorithm refinement

- Tens of billions of data points and reference points (IV, CGMs and finger sticks) internal and external research institutions
- Achieve MARD under 10% in large mixed cohorts
- Increase the generalizability of the RF sensor
- Submit validation manuscripts to key global diabetes conference and peer-reviewed journals

Refine regulatory strategy

- Apply for FDA Breakthrough Designation (FY 9/2024)
- FDA De Novo Classification Preparation (FY 9/2025 / FY 9/2026)

Build upon current global IP leadership and interoperability in non-invasive blood glucose monitoring

Prepare organization for accelerated growth and go-to-market plan (FY 9/2025 / FY 9/2026)

Execute upon multiple JDA opportunities (core and non-core)

This slide contains forward-looking statements that are based on Company management's beliefs and assumptions and on information currently available to the Company. See page 2 for our full discussion of forward-looking statements.

^{*} October 2023 to September 2024

Why Know Labs?

Emerging	Global	IP	Medical	Platform
Leader	Innovator	Leadership	Device	Technology
 NYSE American IPO September 15, 2022 Below the radar - current Form 13F Institutional Ownership <6%*. (25 institutions with 46 funds) ~\$20M Market Cap versus >\$30B Market Cap for CGM Incumbents, a factor of 1500x * Form 13Fs as of 6/30/2023 	 Highly differentiated approach to glucose monitoring with high specificity & sensitivity Combination of radio and microwave spectroscopy monitors high resolution analyte data in real-time 3D data collection 	 246 patents issued, pending and in- process filings worldwide Foundational patents cover more than 100 analytes System-level interoperability to enable new hybrid architectures with CGM incumbents 	 Highly accurate medical device to serve the needs of hundreds of millions Hundreds of tests proved that KnowU can measure blood glucose levels non-invasively High level of accuracy 	 Real-world commercialization opportunities across multiple industries 100+ potential applications and use cases in medical diagnostics and beyond F500-class development partners to bring to products to market

COPYRIGHT KNOW LABS, INC. 2023

COPYRIGHT KNOW LABS, INC. 2023

COPYRIGHT KNOW LABS, INC. 2023

KNOWLABS

