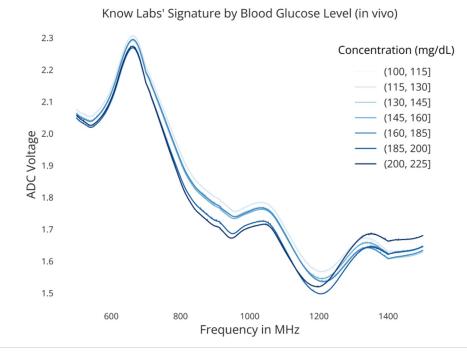

Efficacy of a Non-Invasive Blood Glucose Monitor for Diabetes Management Using a Radiofrequency Sensor and Machine Learning

Dominic Klyve¹, James Anderson², Kaptain Currie², Carl Ward³, Kinara Pandya³, and Virend Somers⁴

¹Central Washington University, ²Know Labs Inc., ³Edge Impulse, Inc., ⁴Mayo Clinic

Building a noninvasive continuous glucose monitoring device


Know Labs' RF Dielectric Sensor: Volumetric Data

Antenna Array that emits and captures radio wave signals in the microwave spectrum and generates an "Energy Field", collecting "volumetric data"

RF Generator enables frequency sweeps from 300 to 4,400 MHz at a rate of ~**500 frequencies per second**

Know Labs' RF Dielectric Sensor

The signal received is modified due to the **dielectric properties of blood glucose**

ADC Voltage (y-axis) measuring voltage based on dielectric permittivities of blood glucose and frequency sweeps

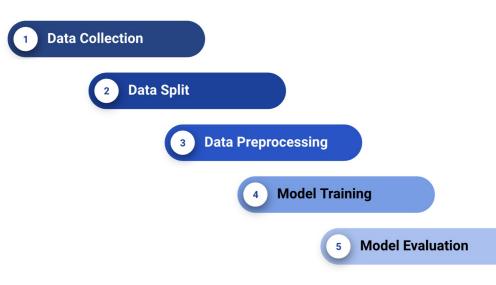
Know Labs' Technology is in development, and there is no assurance that the development will have a successful outcome. Past performance is not indicative of future results. There is no guarantee that any specific objective will be achieved.

Clinical Protocol

Know Labs' Lab in Seattle, WA

People with prediabetes and **T2 diabetes**

Ten study participants' forearms continuously scanned during a 75g Oral Glucose Tolerance Test


Venous blood collected every five minutes using a peripheral intravenous catheter and analyzed using an FDA-cleared blood glucose hospital meter as a reference device

Venous blood glucose readings paired with RF sensor scans for data analysis

KNOW LABS

Know Labs' Technology is in development, and there is no assurance that the development will have a successful outcome. Past performance is not indicative of future results. There is no guarantee that any specific objective will be achieved.

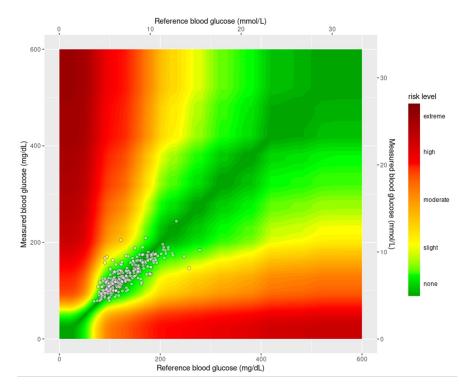
Data Analysis

80% of data collected (520 paired values) used to **train** an **ML model** to estimate the reference venous blood glucose values from the RF sensor data

Model tested on remaining **20%** for 'blind' evaluation

Accuracy of model estimates assessed using Mean Absolute Relative Difference (**MARD**)

Results: RF Sensor Compared to Venous Blood


Glucose Range (mg/dL)	n	MARD(%)	±15%	±20%
Hypoglycemic (<70)	4	9.5 ± 8.3	75.0 ± 4.2	100.0 ± 0.0
Normoglycemic (70-180)	99	11.0 ± 2.7	75.8 ± 0.8	83.8 ± 0.7
Hyperglycemic (>180)	27	11.5 ± 3.1	66.7 ± 1.8	85.2 ± 1.3
Total	130	11.1 ± 2.1	73.8 ± 0.8	84.6 ± 0.6

Blood glucose was estimated on the test dataset with a **MARD of 11.1 ± 2.1%** relative to venous blood

No significant difference in accuracy between **normoglycemic (11.0 ± 2.7%)** and **hyperglycemic ranges** (11.5 ± 3.1%)

Results: Surveillance Error Grid Analysis of Model Accuracy

100% of estimations in Risk Grades A and B.

82.3% in A 17.7% in B

Know Labs' Technology is in development, and there is no assurance that the development will have a successful outcome. Past performance is not indicative of future results. There is no guarantee that any specific objective will be achieved. 08

Conclusion

Novel RF sensor, paired with ML techniques, **holds considerable promise for the non-invasive measurement of blood glucose.**

If made widely available, the sensor could afford several population-level advantages:

- Real-time blood glucose readings pain and needle-free
- No costly, single-use disposables

More readings available to more patients brings significant, potential concomitant health benefits.

Further Clinical Research Aims

The KnowU[™], Non-Invasive Wearable CGM

Deploy the KnowU[™] in large-scale, external clinical studies while making refinements to the device and its algorithms.

Determine the technology's performance throughout:

- continuous wear
- more real-world environments
- within more expansive glycemic ranges, including the hypoglycemic range (<70 mg/dL)

To stay updated on the latest results, visit www.knowlabs.co/research-and-development

